Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biomed Pharmacother ; 144: 112230, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1517059

ABSTRACT

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has become a serious challenge for medicine and science. Analysis of the molecular mechanisms associated with the clinical manifestations and severity of COVID-19 has identified several key points of immune dysregulation observed in SARS-CoV-2 infection. For diabetic patients, factors including higher binding affinity and virus penetration, decreased virus clearance and decreased T cell function, increased susceptibility to hyperinflammation, and cytokine storm may make these patients susceptible to a more severe course of COVID-19 disease. Metabolic changes induced by diabetes, especially hyperglycemia, can directly affect the immunometabolism of lymphocytes in part by affecting the activity of the mTOR protein kinase signaling pathway. High mTOR activity can enhance the progression of diabetes due to the activation of effector proinflammatory subpopulations of lymphocytes and, conversely, low activity promotes the differentiation of T-regulatory cells. Interestingly, metformin, an extensively used antidiabetic drug, inhibits mTOR by affecting the activity of AMPK. Therefore, activation of AMPK and/or inhibition of the mTOR-mediated signaling pathway may be an important new target for drug therapy in COVID-19 cases mostly by reducing the level of pro-inflammatory signaling and cytokine storm. These suggestions have been partially confirmed by several retrospective analyzes of patients with diabetes mellitus hospitalized for severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Immunity, Cellular/drug effects , Metformin/therapeutic use , Severity of Illness Index , COVID-19/epidemiology , COVID-19/immunology , COVID-19/metabolism , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Humans , Hypoglycemic Agents/pharmacology , Immunity, Cellular/physiology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Metformin/pharmacology , Mortality/trends , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism
2.
Int Immunopharmacol ; 101(Pt A): 108292, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487772

ABSTRACT

Leukopenia is a common manifestation of many diseases, including global outbreak SAS-CoV-2 infection. Granulocyte-macrophage colony-stimulating factor (GM -CSF) has been proved to be effective in promoting lymphocyte regeneration, but adverse immunological effects have also emerged. This study aim to investigate the effect of GM -CSF on BCR heavy chain CDR3 repertoire while promoting lymphocyte regeneration. Cyclophosphamide (CTX) and GM -CSF were used to inhibit and stimulate bone marrow hematopoiesis, respectively. High throughput sequencing was applied to detect the characteristics of BCR CDR3 repertoire in controls, CTX group and GM -CSF group. The white blood cells (WBCs) were quickly reduced (P < 0.05) with lymphocytes decreasing causing by CTX, and the WBCs and lymphocytes returned to the level of controls after GM -CSF treatment. The diversity of BCR heavy chain CDR3 repertoire was also significantly decreased in CTX group. Although there is still a big gap from the controls, the diversity was picked up after GM -CSF treatment. The expression of IGHD01-01, IGHD02-14 and IGHJ04-01 with high-frequency usage regularly and significantly changed in three groups, and many genes with low-frequency usage lost in CTX group and did not reappear in GM -CSF group. Moreover, two shared sequences and accounted for the highest proportion in GM -CSF group have been detected in animal model of chronic lymphocytic leukemia. These results revealed that GM -CSF can partially restore changes in the BCR heavy chain CDR3 repertoire while promoting lymphocyte regeneration, but it may also lead to rearrangement, proliferation and activation of abnormal B cells, which can provide a basis for further study on the adverse immunological effects and mechanism of GM -CSF treatment.


Subject(s)
Cyclophosphamide/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Leukopenia/immunology , Lymphocytes/drug effects , Lymphocytes/immunology , Receptors, Antigen, B-Cell/drug effects , Receptors, Antigen, B-Cell/metabolism , Animals , Complementarity Determining Regions/drug effects , Complementarity Determining Regions/genetics , Complementarity Determining Regions/metabolism , Cyclophosphamide/therapeutic use , Female , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Immunoglobulin Heavy Chains/drug effects , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Joining Region/drug effects , Immunoglobulin Joining Region/metabolism , Immunoglobulin Variable Region/drug effects , Immunoglobulin Variable Region/metabolism , Leukocytes/drug effects , Leukopenia/chemically induced , Leukopenia/drug therapy , Lymphocytes/metabolism , Mice, Inbred BALB C , Receptors, Antigen, B-Cell/immunology
3.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478718

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology , COVID-19 Drug Treatment
4.
Br J Clin Pharmacol ; 87(4): 1839-1846, 2021 04.
Article in English | MEDLINE | ID: covidwho-835295

ABSTRACT

AIM: Angiotensin-converting enzyme 2 (ACE 2) is the binding domain for severe acute respiratory syndrome coronavirus (SARS-CoV) and SARSCoV-2. Some antihypertensive drugs affect ACE2 expression or activity (ACE inhibitors and angiotensin II receptor blockers [ARBs]), suggesting use of other hypertensives might be preferable, such as calcium channel blockers (CCBs). Given the limited evidence, the International Society of Hypertension does not support such a policy. METHODS: We used a Mendelian randomization study to obtain unconfounded associations of antihypertensives, instrumented by published genetic variants in genes regulating target proteins of these drugs, with immune (lymphocyte and neutrophil percentage) and inflammatory (tumour necrosis factor alpha [TNF-α]) markers in the largest available genome-wide association studies. RESULTS: Genetically predicted effects of ACE inhibitors increased lymphocyte percentage (0.78, 95% confidence interval [CI] 0.35, 1.22), decreased neutrophil percentage (-0.64, 95% CI -1.09, -0.20) and possibly lowered TNF-α (-4.92, 95% CI -8.50, -1.33). CCBs showed a similar pattern for immune function (lymphocyte percentage 0.21, 95% CI 0.05 to 0.36; neutrophil percentage -0.23, 95% CI -0.39 to -0.08) but had no effect on TNF-α, as did potassium-sparing diuretics and aldosterone antagonists, and vasodilator antihypertensives. ARBs and other classes of hypertensives had no effect on immune function or TNF-α. CONCLUSION: Varying effects of different classes of antihypertensives on immune and inflammatory markers do not suggest antihypertensive use based on their role in ACE2 expression, but instead suggest investigation of the role of antihypertensives in immune function and inflammation might reveal important information that could optimize their use in SARSCoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Immunity/drug effects , Inflammation/drug therapy , Polymorphism, Single Nucleotide , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Antihypertensive Agents/adverse effects , Genome-Wide Association Study , Humans , Hypertension/enzymology , Hypertension/genetics , Immunity/genetics , Inflammation/enzymology , Inflammation/immunology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Mendelian Randomization Analysis , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Prostaglandins Leukot Essent Fatty Acids ; 161: 102177, 2020 10.
Article in English | MEDLINE | ID: covidwho-796199

ABSTRACT

As the infected cases of COVID-19 reach more than 20 million with more than 778,000 deaths globally, an increase in psychiatric disorders including anxiety and depression has been reported. Scientists globally have been searching for novel therapies and vaccines to fight against COVID-19. Improving innate immunity has been suggested to block progression of COVID-19 at early stages, while omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to have immunomodulation effects. Moreover, n-3 PUFAs have also been shown to improve mood disorders, thus, future research is warranted to test if n-3 PUFAs may have the potential to improve our immunity to counteract both physical and mental impact of COVID-19.


Subject(s)
Anxiety/prevention & control , Coronavirus Infections/prevention & control , Depression/prevention & control , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Immunologic Factors/administration & dosage , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Anxiety/immunology , Anxiety/metabolism , Anxiety/virology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cytokines/biosynthesis , Cytokines/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , Depression/immunology , Depression/metabolism , Depression/virology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/virology , Fatty Acids, Omega-3/immunology , Fatty Acids, Omega-3/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Immunologic Factors/immunology , Immunologic Factors/metabolism , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Macrophages/drug effects , Macrophages/immunology , Macrophages/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2
6.
Nat Rev Immunol ; 20(9): 515-516, 2020 09.
Article in English | MEDLINE | ID: covidwho-690707
7.
Rev Med Virol ; 30(5): e2123, 2020 09.
Article in English | MEDLINE | ID: covidwho-639361

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) and pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major concern globally. As of 14 April 2020, more than 1.9 million COVID-19 cases have been reported in 185 countries. Some patients with COVID-19 develop severe clinical manifestations, while others show mild symptoms, suggesting that dysregulation of the host immune response contributes to disease progression and severity. In this review, we have summarized and discussed recent immunological studies focusing on the response of the host immune system and the immunopathology of SARS-CoV-2 infection as well as immunotherapeutic strategies for COVID-19. Immune evasion by SARS-CoV-2, functional exhaustion of lymphocytes, and cytokine storm have been discussed as part of immunopathology mechanisms in SARS-CoV-2 infection. Some potential immunotherapeutic strategies to control the progression of COVID-19, such as passive antibody therapy and use of interferon αß and IL-6 receptor (IL-6R) inhibitor, have also been discussed. This may help us to understand the immune status of patients with COVID-19, particularly those with severe clinical presentation, and form a basis for further immunotherapeutic investigations.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Immune Evasion/drug effects , Immunologic Factors/therapeutic use , Interferon Type I/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disease Progression , Gene Expression Regulation , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive/methods , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Molecular Targeted Therapy/methods , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Signal Transduction , COVID-19 Serotherapy
9.
Drug Discov Ther ; 14(3): 143-144, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-612733

ABSTRACT

In the midst of a pandemic, finding effective treatments for coronavirus disease 2019 (COVID-19) is the urgent issue. In "chronic inflammatory diseases", the overexpression of delayed rectifier K+-channels (Kv1.3) in leukocytes is responsible for the overactivation of cellular immunity and the subsequent cytokine storm. In our previous basic studies, drugs including chloroquine and azithromycin strongly suppressed the channel activity and pro-inflammatory cytokine production from lymphocytes. These findings suggest a novel pharmacological mechanism by which chloroquine, with or without azithromycin, is effective for severe cases of COVID-19, in which the overactivation of cellular immunity and the subsequent cytokine storm are responsible for the pathogenesis.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Cytokines/antagonists & inhibitors , Drug Delivery Systems/methods , Kv1.3 Potassium Channel/antagonists & inhibitors , Lymphocytes/drug effects , Pneumonia, Viral/drug therapy , Azithromycin/administration & dosage , COVID-19 , Chloroquine/administration & dosage , Coronavirus Infections/metabolism , Cytokines/metabolism , Drug Delivery Systems/trends , Humans , Kv1.3 Potassium Channel/metabolism , Lymphocytes/metabolism , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL